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ABSTRACT
The suggestions made by current IDE’s code completion features
are based exclusively on static type system of the programming
language. As a result, often proposals are made which are irrele-
vant for a particular working context. Also, these suggestions are
ordered alphabetically rather than by their relevance in a particu-
lar context. In this paper, we present intelligent code completion
systems that learn from existing code repositories. We have imple-
mented three such systems, each using the information contained in
repositories in a different way. We perform a large-scale quantita-
tive evaluation of these systems, integrate the best performing one
into Eclipse, and evaluate the latter also by a user study. Our ex-
periments give evidence that intelligent code completion systems
which learn from examples significantly outperform mainstream
code completion systems in terms of the relevance of their sugges-
tions and thus have the potential to enhance developers’ productiv-
ity.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Algorithms, Documentation

1. INTRODUCTION
The code completion feature of modern integrated development

environments (IDEs) is extensively used by developers, up to sev-
eral times per minute [21]. The reasons for their popularity are
manifold. First, usually only a limited number of actions are ap-
plicable in a given context. For instance, given a variable of type
java.lang.String, the code completion system would only pro-
pose members of this class but none of, say, java.util.List.
This way, the code completion prevents developers from writing
incompilable code by proposing only those actions that are syntac-
tically correct. Second, developers frequently do not know exactly
which method to invoke in their current context. Code comple-
tion systems like that of Eclipse use pop-up windows to present a
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list of all possible completions, allowing a developer to browse the
proposals and to select the appropriate one from the list. In this
case, code completion serves both as a convenient documentation
and as an input method for the developer. Another beneficial fea-
ture is that code completion encourages developers to use longer,
more descriptive method names resulting in more readable and un-
derstandable code. Typing long names might be difficult, but code
completion speeds up the typing by automating the typing after the
developer has typed only a fraction of the name.

However, current mainstream code completion systems are fairly
limited. Often, unnecessary and rarely used methods (including
those inherited from superclasses high up in the inheritance hierar-
chy) are recommended. Current code completion systems are espe-
cially of little use when suggestions are needed for big (incoherent)
classes with a lot of functionality that can be used in many different
ways.

For illustration, consider the public interface of the class SWT1

Text, which consists of more than 160 callable methods. When-
ever querying the system for instances of type Text an overwhelm-
ing number of proposals are made—including all methods of java.-
lang.Object (e.g., equals(), notify(), or wait())! But actu-
ally methods like wait() are never invoked on an instance of Text
from within the whole Eclipse codebase—after all, a software with
several millions of lines of code. Recommending this method ev-
ery time is rarely helpful to a developer, thus, unnecessarily bloats
the code completions and counteracts the (last two) advantages of
code completion systems.

The method wait() is not an isolated phenomenon. By analyz-
ing the Eclipse codebase, we found that typically no more than five
methods are invoked on SWT Text instances. Thus, a developer
needs to pick the right 5 method calls from the list of 160 proposals.
Even with Eclipse’s capability to narrow down the list of propos-
als with each new character typed by the developer, the list still
remains unnecessarily large.

Callable methods differ not only with respect to the frequency of
their use; they also often differ with respect to the specific contexts
in which they are typically used. Several factors such as the current
location in code, e.g., whether the developer is currently working
in the control-flow of a framework method [6], or the availability
of certain other variables in the current scope affect the relevance
of a method.

For illustration, consider the situation of a developer creating a
dialog window to gather user input using a text widget. Typically,
text widgets have a two-phase life-cycle: (a) they are configured
and placed in a visual container during dialog creation and (b) they
are queried for user input after the dialog window is closed. These
two phases are typically encoded in different methods of the dialog.

1a graphical user interface library



While widget configuration takes place within Dialog.create(),
reading the input occurs within Dialog.close(). Depending on
the dialog method within which the developer needs suggestions
for method calls on a text widget, different methods are relevant.
Within Dialog.create(), relevant methods are text widget cre-
ation methods and setter methods for its visual properties; within
Dialog.close() the getText() method is relevant.

The suggestions made by mainstream code completion systems
are based exclusively on the information given by the static type
system of the programming language. This seems too primitive
given that the examples discussed above suggest that taking into
account factors like the frequency of certain method calls in certain
contexts might help to improve the accuracy of the proposals made
by code completion systems.

Our hypothesis for this paper is as follows: The quality of sug-
gestions and hence the productivity of software development can
be improved by employing intelligent code completion systems ca-
pable of

1. filtering those elements from the list of proposals which are
irrelevant for the current context, thus, disburdening a devel-
oper from knowing all (unnecessary) details of the API used,
instead allowing him to focus only on API elements that are
actually relevant.

2. assessing the relevance of every proposal (e.g., by using a rel-
evance ranking), thus allowing a developer to quickly decide
which recommendations are relevant for the task at hand

In this paper, we propose intelligent code completion systems
that learn from existing code repositories by searching for code
snippets where a variable of the same type as the variable for which
the developer seeks advice is used in a similar context. We have
built three prototype code completion engines of this kind, each
using the information contained in repositories in different ways.
The first prototype uses the frequency of method calls as a metric
to decide about their relevance. The second code completion uses
association rule mining to search the code repository for frequently
occurring method pairs. Finally, the last and most advanced code
completion system recommends method calls as a synthesis of the
method calls of the closest source snippet found. To build this sys-
tem, we have modified the k nearest neighbors algorithm [8], a
classical and efficient machine learning algorithm, to fit the needs
of code completion. We call the resulting algorithm best matching
neighbors (BMN) algorithm.

To evaluate our hypothesis we use a large scale evaluation pro-
cess for recommender systems, sketched in [6], along with stan-
dard information retrieval performance measures. By large scale,
we mean that the system is evaluated with a test bed of more than
27,000 test cases. The evaluation results prove the efficiency of the
learning code completion engines in general and of the best match-
ing neighbors (BMN) algorithm in particular. In order to demon-
strate that the best matching neighbors (BMN) code completion al-
gorithm, which gets the best quantitative evaluation, has the po-
tential to increase developer productivity, we show how it can be
seamlessly integrated into the default Eclipse development widgets
and evaluate its usefulness by means of a user study.

The remainder of this paper is organized as follows. In Sec. 2
we present learning algorithms for code completion systems under
investigation and especially our main contribution: the best match-
ing neighbors (BMN) algorithm. Sec. 3 presents the setup and re-
sults of the quantitative evaluation of the learning code completion
systems which are compared against each other and against the de-
fault Eclipse code completion system. Sec. 4 presents the prototype

implementation of the BMN algorithm and its integration into the
Eclipse IDE. Sec. 5 shows the results of a user study that used our
tool in real-life situations. In Sec. 6 we give an overview of related
work in this area and this paper concludes with Sec. 7.

2. EXAMPLE-BASED CODE COMPLETION
The Eclipse code completion system (EcCCS for short) uses the

type of a variable and suggests all callable method names based on
this information. It only needs the information about the type hi-
erarchy. This system serves as baseline for more intelligent code
completion systems (CCS for short). Clearly, since it proposes all
possible method names, the "correct" methods are always among
its suggestions. The question is how many irrelevant recommenda-
tions are also made.

Our hypothesis, which we will test in the evaluation section, is
that EcCCS makes too many irrelevant recommendations, since it
does not take into consideration the context in which a particular
object is used. This motivates our work on more intelligent code
completion systems that learn how to use objects of a particular
type in a particular context from code other developers have written
in similar situations.

2.1 Three New Code Completion Systems
We have implemented three code completion systems that learn

from existing example code. These systems use different kind of
information as the basis for completing calls.

A frequency based code completion system.
A plausible approach for intelligent CCS is to determine the rel-

evance of each method based on the frequency of its use in the ex-
ample code. The rationale for this strategy is: The more frequently
a method has been used the more likely it is that other developers
will use the same method again. By implementing and evaluat-
ing such a frequency based code completion system (FreqCCS for
short), we want to find out to which extent such a rather simple fre-
quency based relevance ranking system can help developers to find
the right completions.

An association rule based code completion.
Association rule mining is a machine learning technique for find-

ing interesting associations among items in the data [2]. The prob-
lem of mining association rules is to find all rules A → B that as-
sociate one set of items with another set. Association rules have
already been used in the context of recommendation systems for
software engineering. Codeweb [20] generates usage pattern doc-
umentation. Fruit [5] makes interactive usage recommendations
when developing software using frameworks. Both approaches do
not handle recommendations on variable level. To the best of our
knowledge, there is no publication that proposes to apply associa-
tion rules in the context of code completion systems.

However, it is possible to use an example codebase to mine variable-
scoped association rules and to use the context of a variable for de-
termining the rules to select. In a nutshell, association rules can be
used for code completion system.

Consider the introductory example of using a Text widget again.
The data mining process of association rules may identify two dif-
ferent usages: 1) Object creation which involves a constructor call
and calls to several setter methods like setText(), and 2) object
interrogation, when the object is queried for its state by calling get-
ters like getText(). An association rule would be then “If a new
instance of Text is created, recommend setText()”. Another
rule would be “If in Dialog.close(), recommend getText()”.
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class A extends Page{
   Text t;
   void createContents(){
      t = new Text();
      t.setText(..);
      ..
   }
}

Figure 1: Encoding Framework Usages as Binary Vectors

We have implemented such an association rules based code com-
pletion system (ArCCS for short).

The Best Matching Neighbors code completion.
This new code completion system is based on a modification of

the k-nearest-neighbor (kNN) machine learning algorithm [8]. To
the best of our knowledge, kNN has not been used so far for code
completion system. Hence, this algorithm is the main contribution
of this paper. For this reason, we present this code completion en-
gine in detail in the following section.

2.2 The Best Matching Neighbors Completion
System

In this section we present the best matching neighbors algorithm
(BMN for short). BMN adapts the k-nearest-neighbor (KNN) al-
gorithm [8] to the problem of finding method calls to recommend
for particular objects.

The KNN algorithm comes from the pattern recognition research.
It is a classification algorithm. For instance, in the context of im-
age recognition, given the image of a letter, the algorithm predicts
the letter. The intuition of the algorithm is based on a common
sense rule which can be enounced as follows: to predict something
according to some observation, let’s find in one’s experience a sim-
ilar situation, and predict what actually happened at the end.

The KNN algorithm fits remarkably well to the problem of code
completion: when a developer wants to complete code at the usage
pattern level, she might start to search for code fragments very sim-
ilar to the already written ones (e.g. using Google Code) and takes
inspiration from the rest of the code. In a nutshell, our algorithm
works as follows:

1. Extract the context of the variable;

2. Search for variables used in similar situations in an example
codebase;

3. Synthesize method recommendations out of these nearest snip-
pets.

More specifically, given a local variable v in the code under de-
velopment, the system extracts and encodes the context as a feature
vector. Based on this information, the algorithm searches the exam-
ple base for object usages that are close to the usage being codified.
From the close examples, the algorithm recommends the methods
that are most likely to be used. The BMN code completion system
(BMNCCS for short) is a tailoring of the KNN algorithm to the
context of code completion. Our tailorings are:

1. The way of extracting the context of the variable and encod-
ing it as a feature vector;
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Figure 2: From Observations to Recommendations

2. The design of meaningful and efficient distance measure be-
tween the code being written and the snippets of the example
code base;

3. The selection mechanism of nearest neighbors;

4. The synthesis of method recommendations out of these near-
est snippets.

2.2.1 Codebase Variables as Binary Vectors
The BMN system is built for completing code that uses a partic-

ular framework.
Given a local variable t in the code the developer is working on,

whose type comes from the framework under consideration, the
BMN system extracts the declared type of the variable, the names
of the methods already invoked on t, the method within which t is
being used. Then it encodes them as binary information.

Figure 1 illustrates this extraction and encoding process: the fea-
ture Text.setText() is set to 1 if setText() is called on t, and the
feature in:page.PerformOK() is set to 1 if the variable in used in the
method context Page.PerformOK().

Each variable of the example codebase is extracted from the ex-
ample codebase using the Wala bytecode toolkit2 and encoded as
described above. This process ends up with an example code base
represented by a a set of feature vectors, i.e. a binary matrix.

Let k be the number of variables extracted, i be the number of
method contexts found in the training code base, and j be the num-
ber of all callable methods on all framework types. Then the usage
binary matrix U has k rows and i + j columns.

Since a variable can be in one method context only, the matrix
U has the following property: for each observed usage v, there is a
single context feature ft, 0 < t <= i such that vf = 1, i.e. each
usage happens in the context of exactly one method; Such a usage
binary matrix is shown at the left hand side of figure 2.

2.2.2 A Distance Measure for Code Completion
The KNN algorithm default distance measure is the Euclidean

distance. First, we observe that since we are in a binary feature
space, the Euclidean distance is exactly the square root of the Ham-
ming distance 3, as proved in the following equation.

2http://wala.sf.net
3The Hamming distance between two feature vectors is the number
of positions for which the corresponding features are different.



euclidean(u, v) =

√√√√ n∑
i=1

(ui − vi)2

since ui, vi are 0 or 1

=
√
|u1 − v1|+ · · ·+ |un − vn|

=

√√√√ n∑
i=1

diff(ui, vi)

=
√
hamming(u, v)

where diff(ui, vi) = 1 ⇐⇒ ui 6= vi

This observation leads to a high-performance implementation of
the code completion system since the calculation of Hamming dis-
tance is efficient (in comparison to the calculation of Euclidean dis-
tance).

Second, the KNN algorithm default distance measure is based on
the full feature space. We show in the following that it does not fit
to code completion.

The top matrix in the left part of figure 2 is an encoding of an
example code base as feature vectors. The bottom left corner of the
figure shows a context (observation) given to the code completion
system. The observation vector at the bottom left corner of figure 2
encodes the situation when the code completion is triggered in the
context of overriding the method Page.createContents() and
after an instance of Text is created. The ones and the zeros in the
context vector denote facts we are sure about. For instance, for the
observed vector of figure 2, we are sure that we are within a method
that overrides createContents() and that we are not within a
method that overrides performOK(). However, we cannot say for
sure whether the developer does not want to use setText(), or
whether she simply has not yet used it, or whether she does not
even know about its existence. Question marks in the vector that
encode the context denote uncertainty.

Using a distance on the whole feature space requires treating un-
certainty as zeros. It turns out that in a real world feature space
there are much more uncertain feature values (i.e., question marks
in figure 2) than certain feature values. In such a case, the Hamming
distance captures only the noise due to uncertainty. We encoun-
tered this problem empirically. This can be explained as follows
using probabilities.

Let us model the terms of the Hamming distance, diff(ui, vi),
as a random variable following the Bernoulli distribution, which
has the following characteristics:

E(diff(ui, vi)) =p

var(diff(ui, vi)) =p · (1− p)

Let us now consider the variance of the Hamming distance by
splitting its terms in two groups: related to certain and uncertain
information. Let also assume that these two groups are uncorre-
lated, then thanks to the Bienaymé formula, we can write:

var(hamming(ui, vi)) = var(
∑

i

diff(ui, vi))

= var(
∑

i∈certain

diff(ui, vi))

+ var(
∑

i∈uncertain

diff(ui, vi))

which, thanks to the central limit theorem, can be transformed
to:

var(hamming(ui, vi)) =
√
ncertain · p · (1− p)

+
√
nuncertain · p · (1− p)

Since p(1 − p) is a constant and nuncertain >> ncertain in
our feature space, the Hamming distance is driven in this context
by nuncertain, i.e., captures only the noise of uncertainty. Practi-
cally, this means that using the KNN algorithm on the whole feature
space gives poor results for code completion. Our solution to this
problem is to compute the distance on a partial feature space, based
only on certain information of the observed context.

The first modification made to the initial KNN algorithm is to
compute the distance based on certain information only. Given
an incomplete vector (icompVec) encoding the context, the algo-
rithm iterates through all rows of the binary usage matrix and de-
termines the distance between each row and icompVec, based on
the columns of icompVec that contain certain information. This
is illustrated in figure 2, where only the three first columns of the
matrix are used to compute the distance between the context and
the example codebase. Eventually, there are three snippets close to
the observation at an equal Hamming distance of 0: the three first
rows of the example code base (marked by a red rectangle).

To sum up, the BMN system computes the distances between the
current programming context and the example codebase based on
the Hamming distance on a partial feature space.

2.2.3 The Selection Mechanism of Nearest Neighbors
In a standard pattern recognition context, when using the KNN

algorithm, features are real numbers. Hence the distance between
the observation and the database is also a real number that allows a
complete ordering of neighbors.

In the context of code completion and with the distance measure
described in the previous section, it turns out that a lot of neighbors
are at the same distance of the input vector. It means that there is
no complete ordering of the neighbors and it does not make sense
to select the K nearest neighbors, whatever K is. It is very likely
to have other neighbors that are exactly equally distant to the input
observation. For instance, in the example of figure 2, there are three
equally close neighbors.

To address this problem, we build equivalence classes based on
the calculated distance and then take the set with the smallest dis-
tance. This set contains best matching neighbors and ground the
name of the algorithm. This set is used to compute the method call
recommendations.

2.2.4 Synthesizing Recommendations
Since the KNN algorithm is a classification algorithm, it retrieves

a class (for instance ’A’, ’B’, etc. in the context of letter recogni-
tion).

The BMN algorithm acts differently. Once the nearest snippets
are selected, it computes the likelihood of the missing method calls
based on their frequency in the nearest snippets, i.e., by counting
the occurrence of each method call in the selected snippets and di-
viding it by the total number of selected snippets.

In the example in figure 2, the nearest snippets of the context
are the three first rows. The BMN algorithm then looks at the
methods called in each snippet and counts their occurrence. For
instance, the method Text.setText() occurs in two out of the
three records and Text.setFont() occurs only once. Method
Text.getText(), however, is never observed, whenever the con-
structor call has been observed. When dividing these numbers by



the total number of selected rows, we get the following recom-
mendations: 2

3
of the closest examples called Text.setText(),

1
3

called Text.setFont(), and none of the examples matching
the current observation called Text.getText().

The BMN algorithm is parameterized with a threshold, called a
filtering threshold. If the likelihood of a method call is higher than
the filtering threshold, the methods are recommended and ordered
by their likelihood. In the example of figure 2, considering a thresh-
old of 50%, the BMN code completion system recommends only
one method call to setText(); the method call has a likelihood of
66%.

To sum up, the BMN algorithm identifies method calls to be rec-
ommended to the user based on their frequencies in the selected
nearest neighbors.

3. EVALUATION
In the following, we evaluate the Eclipse code completion and

the three code completion systems (CCS) introduced in Sec. 2.

3.1 Evaluation Data Set
We measure the ability of the code completion systems under in-

vestigation to predict method calls on objects of the Standard Wid-
get Toolkit (SWT), a graphical user interface library [9]. The SWT
library has been chosen for several reasons:

• There are an important number of open source programs that
uses SWT. These programs constitute the "knowledge" base
from which BMN, FreqCSS, and ArCSS systems can learn.

• Also many frameworks rely on the SWT framework. De-
velopers must know the concepts of both frameworks, e.g.,
where to place the method calls to SWT instances in the con-
text of the other framework etc. As discussed in the introduc-
tory example, the knowledge about the current overridden
framework method can be leveraged by a code completion
system to improve the proposals.

• SWT is used in many projects, hence a code completion sys-
tem for it could be immediately beneficial to a great audience
of developers.

We collected the whole Eclipse 3.4.2 codebase for conducting
the experiment. This codebase grounds both the code completion
system and the creation of the evaluation scenario. To allow future
comparison with other approaches, we will make this dataset public
available on the project homepage.

3.2 Evaluation Scenario
The code completion systems under investigation are evaluated

with several thousands of queries following the automated evalua-
tion process presented in [6]. In the following, the main steps of
the evaluation process and their rationale are briefly summarized.

1. The initial data set is randomly split in two parts: 90% grounds
the initial knowledge of the code completion system, the re-
maining 10% are called test data and are used to create eval-
uation scenario. This step ensures that the system is not eval-
uated with queries for which it has the exact information to
answer them. This is a crucial requirement for evaluating
machine learning systems [4].

2. For each binary feature vector of the test data, some method
calls (i.e., some 1s) are removed. The resulting degraded
vector will be used as a query to the system. The removed
method calls constitute an expectation, similar to the expected

1 Text t = new Text(..);
2 t.|

(before)

1 Text t = new Text(..);
2 t.setText(..);
3 t.setLayoutData(..);
4 t.setFont(..);

(after)

Figure 3: Code Snippet Before & After Code Completion

value of a unit test case. This step simulates a real program-
ming situation, where the developer needs assistance after
she has already written some code. We remove half of the
method calls of the initial feature vector thus simulating the
situation where the developer has already performed half of
the job. This choice is a pragmatic trade-off between: (a) pro-
viding information that enable to make intelligent context-
dependent predictions, and (b) withholding information from
the system to complicate the task of prediction.

The dataset we used for this evaluation contained more the
27,000 examples usages, and the number of method calls in
these examples varied from 2 up to 46 methods calls.

The randomization in step #1 ensures that, on an average, the
query distribution between small and hard tasks reflects the
real distributions of such situations in the codebase.

3. For each query, each code completion system is asked to re-
turn a prediction of the missing method calls.

4. For each prediction and the corresponding expectation, eval-
uation metrics defined in Sec. 3.3 are calculated.

To achieve a standard machine learning evaluation, we repeat the
evaluation process 10 times; this is known as 10-fold cross valida-
tion [18]. Since the initial dataset consists of 27,000 records, the
code completion systems are actually evaluated against (27, 000 ∗
0.1) ∗ 10 = 27, 000 real world programming queries.

3.3 Evaluation Metrics
The objective of this evaluation is to figure out to which extent

the four code completion systems under investigation, EcCCS, Fre-
qCCS, ArCCS, and BMNCCS, can: (i) identify relevant methods,
i.e., methods that are actually used at the end by the developer to
complete her code, and (ii) weed out irrelevant proposals, i.e., those
that did not make it into the final code, without sifting out too many
of the relevant methods.

The measures we use for assessing the performance are preci-
sion, recall, and the F1-measure. These measures are commonly
used for evaluating the performance of information retrieval sys-
tems like (web) search engines or generally any kind of recom-
mender systems. The intelligent code completion systems that are
subject of this evaluation are basically recommender systems in a
particular domain.

To explain the meaning of the metrics consider the code snip-
pet depicted in Listing 3. This listing shows an incomplete usage
of a Text widget on the left hand side and the final code after as
it should be. Assume that a developer that actually knows exactly
what methods to call on t nevertheless pressed Ctrl-Space in line 2
on the code snippet on the left hand side to query the code comple-
tion system. Assume further, that the system returned three recom-
mendations: setText(), setLayoutData() and addListener().
The developer investigates these recommendations and decides to
apply the first two proposals, to ignore the third one, and to add a
new, not recommended call to setFont().



Let us measure the performance of the CCS for this query. The
developer added three method calls to the code. Two calls were pre-
dicted correctly by the system (setText(), setLayoutData());
the third call (setFont()) was not proposed. Thus, the system
proposed 2/3rd of the calls the developer actually needed. This is
exactly the recall the CCS achieved for this query! More formally,
recall is defined as the ratio between the relevant (correct) recom-
mendations made by the system for the given query and the total
number of recommendations that it should have made:

Recall =
Recommendations made∩relevant

Recommendations relevant

Clearly, a system that recommends all possible methods would al-
ways achieve a great recall. But, if only one out of a hundred rec-
ommendations is actually needed, the system is not really intelli-
gent. This is where the second interesting question, namely, how
many false recommendations the system made, comes into place.
In our example, 2/3rd of the recommendations actually made it into
the final code. This is the precision that the CCS achieved for the
query. Formally, precision is defined as the ratio between relevant
recommendations made and the total number of recommendations
made by the system for a particular query:

Precision =
Recommendations made∩relevant

Recommendations made

Both values together allow to assess the quality of a CCS for a
given query. In order to summarize how the systems perform on
several queries the precision and recall values are averaged over
all queries[1]. After averaging, the performance of each comple-
tion system is boiled down to a pair of numbers. However, with
two numbers characterizing the "goodness" of systems, the ques-
tion arises when a system is “better” than another. It might be the
case that one system has a very high recall but a very low preci-
sion. Another system might have only a medium recall but also a
medium precision. The F-Measure[26] has been widely accepted
by the research community as a means to correlate precision and
recall by computing their harmonic means:

F =
(1 + β2) · precision · recall
β2 · precision+ recall

The F-Measure allows to emphasize either recall or precision by
accordingly assigning the β parameter. For our evaluation, we
equally weight precision and recall (β = 1). The resulting formula
is called the F1 measure [26].

In addition to summarizing the performance in a single num-
ber, the F1-Measure has another important role in our evaluation.
Each CCS under evaluation has a set of specific parameters (e.g.,
minimum likelihood thresholds etc.) that affect its performance.
To produce comparable results we need to minimize the effects of
accidental parameter guessing. For this purpose, we used the F-
Measure as an optimization criterion for each CCS: We run several
dozen experiments for each CCS to figure out the best parameter
settings that maximized the F-Measure.

3.4 Evaluation Results
Figure 4 summarizes the results of the evaluation. It shows the

recall, precision and F1 levels reached by each code completion
system. As already mentioned, all systems were tuned to maximize
F1 with the corresponding algorithm parameters (e.g. the filtering
threshold of FreqCSS and BMN), except EcCCS which has no pa-
rameter to be tuned.

The EcCCS performs worst. As expected, it proposes all relevant
methods (i.e., it has a recall of 100 %), but its low precision shows
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that 99 % of its recommendations were not what the developer ac-
tually needed, thus false proposals in our setup. This result clearly
suggests that current code completion systems provide a large room
for improvements.

The frequency-based CCS achieves significantly higher preci-
sion than the EcCCS; yet, its overall performance is disappointing.
Only one out of three proposals was actually correct. Furthermore,
the system only finds half of all relevant method calls. Even if the
underlying idea would seem intuitive, we doubt, that code comple-
tion systems purely based on the frequency of method calls would
meet the developer expectations.

The rule-based approach significantly improves both values: It
finds 65% of all relevant methods and, what is really interesting,
85% proposals were correct. This shows that the proposals made
by the ArCCS are highly reliable and developers can trust recom-
mendations made by this system.

Finally, the BMNCCS achieves a 10 % higher recall than ArCCS
and a slightly lower precision. In total, from all evaluated code
completion systems the BMN system achieves the highest F1 value,
thus performs best with respect to this evaluation setup.

Figure 5 enables us to refine these conclusions by decomposing
the F1 performance along the different query settings. The results
are grouped by the total size of method calls contained in the ex-
ample snippets. For illustration of this figure, consider the second
group of bars labeled with “1|3”. The bars summarize the perfor-
mance of the code completion systems for the following queries:
Given one randomly selected method call, the system was asked to
return the two missing calls; in total the example snippet contained
3 calls. This figure lets us draw the following conclusions.

First, the overall performance of the evaluated systems stays in
the same order of magnitude. Since the F1 measure stays around



Figure 6: Integration of our Intelligent Code Completion into Eclipse

80%, we can say that the BMN code completion system is able to
predict method calls based on large usage patterns involving dozens
of method calls. Second, the gap between ArCCS and BMN widens
when the completion task size increases. While ArCCS and BMN
are roughly equivalent for predicting method calls based on short
usage patterns, BMN is significantly better for large usage patterns.

To sum up, the best code completion according to this evaluation
is the BMN system. It finds 72% of all relevant method calls and
82% of the recommended method calls are actually correct. The
performance results of this new system give encouraging evidence
that intelligent code completion systems are not a utopia.

3.5 Discussion
In the following, we discuss the the generalizability of the eval-

uation results.

• Our evaluation deals with Eclipse code, i.e. our context (en-
coded as feature vectors) contains information about the object-
oriented context of a variable. For instance, the context might
say that the current variable is in a class that extends Dialog-
Page, and in a method that overrides a specific method of
DialogPage, say setControl. This additional infor-
mation may improve the performance of the system, and
weaken the generalizability of the very high precision and
recall.

• Our evaluation deals with SWT objects. It seems that SWT
classes contain more logic, more complex usage patterns than
classes of the default Java API (e.g. java.net.URI). Again,
the generalizability of the very high precision and recall might
be discussable for low-level APIs, such as default Java API.
Currently, we are conducting further experiments to assess
the performance of the system on different target libraries
(without object-oriented contexts, and without complex us-
age patterns).

• Evaluation queries are built by randomly selecting method
calls from real variables of the codebase, without taking into
account the order. This may lead to unrealistic queries. For
instance, if one considers the ordered calls on a variable, we
may randomly drop out the middle third of the calls. In this
case, it is unlikely that a developer would write code this way
and that the code completion system would be queried with

this context. We are in the process of obtaining empirical re-
sults to figure out: 1) whether our approximation increases or
decreases the overall precision or recall and 2) to what extent
the order of method calls matters (for instance, methods that
configure an object may be called in different orders).

4. INTEGRATING BMN INTO ECLIPSE
In this section, we present our prototype integration of the BMN

engine into the Eclipse IDE. We decided to integrate BMN since it
was the engine with the best performance according to the evalu-
ation. The goal for building the prototype was to enable the user
study presented in Sec. 5 to give us insight on the practical rel-
evance of code completion systems capable of learning from ex-
ample code. We present the prototype by elaborating on three
main differences between of our prototype to the default Eclipse
code completion system. Our statements are illustrated by figure 6,
which shows a screenshot of our prototype.

Size of the method name list.
First of all, an advanced code completion system substantially

reduces the number of methods suggested to those with high prob-
ability of being relevant in a particular context. We agree with
Robbes and Lanza[22] that we cannot expect the programmer to
scroll down a huge list of method names in order to find the good
one. This would introduce a cognitive context switch in the pro-
grammer activity.

Our system filters recommendations based on a threshold on the
confidence value of the recommendations. The higher the thresh-
old, the lower the number of recommendations in the code comple-
tion widget. Based on our experience in using earlier versions of
the prototype, the default filtering threshold is set to 30%.

Confidence value.
The default code completion widget is enhanced with the confi-

dence values of the recommendations (for instance, consider in the
screenshot the 99% confidence value of method setText). This
value is an indicator for the developer of what to do next. We use
the following guidelines to interpret the confidence values.

A very high confidence value (∼ >90%) indicates that unless the
developer explicitly knows that she is implementing a limit case,
this method has to be called.



A high confidence value (∼ >50%) means that this method can
probably be called. From the programmer view point, the interpre-
tations can be:

1. “I know the usage pattern I am implementing, I know this
method and I am happy the tool agrees with me”. The tool
may strengthen the confidence the programmer has in her
knowledge and in her code.

2. “I did not plan to use this method. May be I am wrong in
using this class. Let’s read the corresponding method doc-
umentation”. Our code completion system can be used as a
knowledge watchdog. The difference between the developer’s
plan and the confidence value is a kind of warning.

3. “Hey, what is this method? I don’t know it. Let’s read the
corresponding method documentation, it can be an important
one.” Our code completion system helps the programmer to
discover new features. It assists her in improving her knowl-
edge.

A low confidence value (∼ <50%) is a reminder of potential meth-
ods to call in special usage patterns. Since special usage patterns
are rarely used, the programmer forgets them easily. In this case,
our code completion system can act as a reminder.

Note that the thresholds for interpreting the confidence values
are fuzzy. When one gets used to work with a code completion sys-
tem with confidence values, each programmer tends to tune these
values w.r.t. the framework used and to her experience. Note also
that the validity of these guidelines depends highly on the applica-
tion of the single responsibility principle in the class being used. If
a class can be used in several different ways, i.e., it violates the sin-
gle responsibility principle, the confidence values computed by our
code completion system automatically decrease and the thresholds
loose their relevance.

Dedicated view.
We propose to add a new view to Eclipse, dedicated to code com-

pletion, shown on the right hand side of figure 6. In contrast to
the code completion window (which shows recommendations for
a single variable only) this view provides a summary of all recom-
mendations (including their relevance) available for the given class
and its variables. This view serves as a browser, allowing a de-
veloper to search through all recommendations and supports her to
understand the instance usage concepts.

Conclusion.
Our new code completion system is tightly and seamlessly inte-

grated into the Eclipse IDE. It does not break the usual program-
mer way of working: 1) advanced code completion is still avail-
able with Ctrl-Space (the default keyboard shortcut that every
Eclipse programmer knows) 2) code completion still works without
noticeable delays (i.e., computing the distances between the current
context and the codebase is not an issue in terms of performance).
The improvements compared to the existing Eclipse code comple-
tion widgets are: 1) irrelevant methods are removed 2) method rec-
ommendations are always given together with a confidence value
and 3) we introduce a new view dedicated to code completion.

5. USER STUDY
In Sec. 3 we demonstrated the effectiveness of intelligent code

completion systems in identifying relevant methods for a given con-
text using a large-scale automated evaluation approach. In this sec-
tion, we report on the user feedback of 10 experienced Java pro-
grammers who tested the BMN system for its usefulness. The user

study consists of three phases: (i) completing a predefined task, (ii)
filling a questionnaire after the programming task, and (iii) giving
an interview one or two days after returning the questionnaire.

5.1 Setup
For the user study each subject had to develop a small graphi-

cal user interface using the Eclipse SWT UI Framework. This user
interface required several graphical SWT widgets like Buttons,
Text fields, Combo boxes etc., as well as some interactions between
these widgets in response to some user interactions like enabling
and disabling of widgets etc. The appearance of the interface and
the dynamic behavior was specified with an annotated screencast.4

Furthermore, we provided the basic application code as a down-
loadable Eclipse project to free developers from Eclipse-specific
tasks unrelated to the user study as such.

Overall, ten subjects participated in the user study. All subjects
had several years of experience with the Java programming lan-
guage and were familiar with Eclipse and its code completion sys-
tem. Half of the subjects did not have any experience with the SWT
framework; the other half had at least several months of experience
in developing SWT applications and, thus, were acquainted to the
concepts of the SWT framework.

5.2 Results
For the questionnaire and interviews we asked the subjects to

answer several questions concerning the usefulness of the proposed
system and to give their personal rating to these questions. For the
personal ratings the subjects had to choose one of Strong Agree
(++), Weak Agree (+), Weak Disagree (–), Strong Disagree (– –),
or No Answer (◦) if none of the previous was deemed appropriate.
The significant questions from the questionnaire are given below
(Questions 2 and 5 are summaries from interviews as they were not
rating-based questions).

1. Did the system propose relevant method calls? (5++ / 4+
/ 1 ◦) This question aims to identify whether subjects’ perception
was in alignment with the numerical results of the automated eval-
uation process. Nine out of ten subjects were pleasantly surprised
about the quality of the recommendations made by the system but
some criticized that in few cases the system also recommended un-
related methods, which lead to deductions in the rating.

2. Did the system correctly rank the proposals by relevance?
(Interview) This question aims to identify how valuable the subjects
found the two ways for presenting relevance of a recommendation
to the users supported by the system, namely, (a) by presenting the
likelihood along with the proposal and (b) by ranking the recom-
mendations by the identified relevance. Most developers stated that
they largely ignored the probability of a proposal and just followed
the order of the proposals on the code completion window. The
interviews suggest that displaying the exact relevance (percentage)
is not a necessary feature as long as the most relevant recommen-
dations are found on top of the list.

3. Did the tool speed up your development compared to the
default Eclipse code completion? (4++ / 5+ / 1 –) One reason for
the success of code completion is that it speeds up coding. This
question aims to catch the subjective perception whether intelligent
code completion systems can further improve development speed
compared to the default Eclipse code completion. We take the ob-
tained feedback as a positive indicator of the usability of the tool
that shows its potential for future research.

4http://www.stg.tu-darmstadt.de/research/
core/



4. Is the tool well integrated into Eclipse? (7++ / 1+ / 2 – –)
The aim of this question is (i) to identify how pleased the subjects
were with the implementation, and (ii) whether some issues with
the interface existed that might affect other aspects of the tool. The
user feedback suggests that the integration into the Eclipse’s code
completion is well accepted by the users. Two subjects complained
that the Javadoc for the SWT framework was missing, thus, re-
ducing the usability of the tool. Since this is probably due to a
misconfiguration of the Eclipse system itself, these complains do
not diminish the general positive feedback about the integration.
Based on this feedback, we conclude that the survey results were
not distorted by implementation issues.

5. Did the tool help you to understand the concepts of the
framework? (Interview) Since the intelligent CCS recommends
likely method calls, one hypothesis was that the tool also might
support developers in understanding the framework concepts faster.
The interview showed that this hypothesis is currently unfounded.
Usually, framework concepts have an abstraction level much higher
than method calls, thus, presenting likely methods did not help the
novice subjects of this user study to grasp the underlying frame-
work concepts. Furthermore, the subjects identified several other
issues with learning a framework which we will elaborate on in
Sec. 7.

Summarizing, the promising results of the user study show that
it is reasonable to assume that developers would accept intelligent
code completion systems as a valuable extension to the toolbox
available for modern software engineering.

6. RELATED WORK
A large number of framework documentation techniques exists

[7]. Prescriptive techniques such as cookbooks, tutorials, exem-
plars, and pattern languages document how to customize a frame-
work in order to accomplish a specific task [11, 15]. Other work is
directed to the documentation of a framework’s architecture, so that
users understand the rationale behind the design [3]. While help-
ful, these techniques require that the developer puts much effort to
browse and find the good tips concerning the code being written.
In contrast, with our approach, the documentation generation is
fully automated and integrated into the development environment;
the generated documentation is context-sensitively presented to the
user by the code completion system.

Code Templates provide a (pre-coded) means of inserting larger
code snippets, such as for the creation of an SWT Button. Although
code templates are powerful, they suffer from the problem that their
creation and maintenance is costly; consequently only few common
patterns are encoded using templates. Furthermore, a large number
of framework interactions are context-sensitive and consist of sin-
gle method calls only. For these cases typically no templates exist.

Another category of tools enable users to find code snippets in
code repositories. Several tools treat code like regular text docu-
ments and apply information retrieval technology to find code ex-
amples [10, 12, 17].

Software exploration tools like Sextant [24] or modern IDEs like
Eclipse provide queries to search for code elements based on struc-
tural properties. While these search features are better than docu-
mentation browsing, they still require that the developer is involved
in some heavy interactions with the tool.

Some tools feature implicit queries, i.e., the user is no more re-
quired to write a query, but the latter is generated automatically
from the current context. For instance, Codebroker [27] uses signa-
ture information and comments to actively present similar program
elements in its repository. Strathcona [14] uses the structural con-

text of the code under development, e.g., the super type, method
calls, or overridden methods to find examples with a high similar-
ity to this context. One disadvantage of example-based tools is,
that the developer still has to do the mapping between the recom-
mended code snippet and its own current programming task. Intel-
ligent code completion systems address a different problem. Rather
than proposing example code, they use examples to identify com-
mon usages of the framework and assess the relevance of method
calls found in common usages for the developers current context,
giving a developer an intuition which methods are actually relevant
and which ones she might want to ignore.

Mylyn [16] shows methods that have been frequently and re-
cently interacted with by the developer at the top of the content
assist list. Our approach is complementary. Mylyn learns what to
put at the top based on the developer’s personal usage history; in-
telligent code completion systems proposed here learn what to put
on top by analyzing code submitted by other developers.

There are three noticeable approaches to help developers when
using a framework. They all address the same problem statement:
the developer knows what type of object is needed, but not know
how to write the code to get the object. Prospector [19] addresses
this issue by first creating elementary “jungloids” from framework
methods that model the direct reachability of a type tout given a
type tin. When the user searches for a type t, the tool follows
the jungloids starting from the current code context (all accessible
types) until t is reached and returns the code snipped modeled by
the synthesized jungloid chain. XSnippet [23] and PARSEWeb [25]
extend this approach by improving the ranking heuristics, the query
capabilities, and the mining process, and, respectively, by using
a code search engine as an example repository which enables to
collect code samples on demand. Compared to these approaches,
we address a different problem: given an object of some type, what
methods can be called on it in a certain context. It is to be noted
that Prospector, XSnippet, and Parseweb were evaluated with at
most 40 different tasks, while the performance of BMN is assessed
by more than 27000 test cases.

Hill and Rideout presented an automatic method completion sys-
tem [13] which addresses the issue of writing so-called atomic
clones. Atomic clones are small scale and good copy/paste of
source code. Hill and Rideout argue that atomic cloning is a useful
development practice: transforming an atomic clone as a reusable
unit is too heavy weight and hinders the design and the extensibility
of the software. In order to both help the developer and speed up
the writing of an atomic clone, the KNN algorithm is used to match
in a code base an atomic clone that is then directly inserted in the
source code. While the KNN algorithm and the Euclidean distance
matches the problem of searching for atomic clones, we showed
why and how to improve the KNN algorithm to create a good code
completion system that helps the developers to choose methods to
call on an object.

Robbes and Lanza [22] showed that it is possible to leverage the
program history to improve the quality of code completion. They
define and evaluate 6 new algorithms for method name completion.
Our approach differs by important points. Evaluation data: Their
evaluation strategy requires to have a complete change history of
software, obtained by using specific plug-in of the IDE over years
of software development. On the contrary, our evaluation requires
only to have client source code of the framework or library under
study without any special versioning/change data. Note that since
we do not have such specific change data, we cannot quantitatively
compare our algorithms to theirs. Replicability: The data they used
for evaluation is not publicly available. On the contrary, our evalu-
ation is replicable since we use the publicly available Eclipse code-



base. Scope: Their algorithms are defined and evaluated in the
case where the programmer has already entered at least the two
first characters of the method names. Our approach is more ambi-
tious: we aim to predict relevant method names without any prefix
entered and proved that it is possible.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced the concept of example based code

completion system. These systems are intelligent, their knowledge
is based on information mined in an example codebase. They im-
prove the state-of-the-art of code completion systems by producing
context-sensitive and relevant method call recommendations, while
remaining seamlessly integrated into the IDE.

We presented three example based code completion systems.
We conducted a large scale evaluation of these three systems with
27000 real world code completion queries extracted automatically
from the example code base. We showed that these systems dramat-
ically outperform the type-based Eclipse code completion system.
The best system built is able to predict 82% of the method calls
that are actually needed by the programmer (recall) and 72% of
the recommended method calls are relevant (precision). It is based
on a variant algorithm of the machine learning algorithm K-nearest
neighbors, which we called Best Matching Neighbors (BMN).

We performed a user study involving 10 subjects to figure out
whether real world developers could benefit from such a new code
completion system. The results are promising: 9 out 10 subjects
think that an example based code completion system speeds up the
development.

There are several areas for future work. Further experiments are
needed to gain a more precise understanding of the generalizability
of the evaluation results for other kinds of software systems such as
classical libraries and standard APIs, as mentioned in Sec.3. Also,
there is a lot of machine learning techniques that could leverage
the example codebase to build a better method recommendation
model. Also, a feedback that we received from the user study was,
once you are recommended a relevant method by the system, you
still have to figure out yourself how to handle parameters to the
call, which is a demanding task. Our future work will address this
issue. We believe that it is possible to build a system that recom-
mends what to do with the parameters: using a existing object, in-
stantiating a new one, using a constant value, etc. are all possible
alternatives.
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